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Introduction and Assumptions

Let (Q2,F,P) be a complete probability space with a right continuous filtra-

tion (F t)t 0 and let ( pfI~fI p tO) be a countably Hilbert nuclear space with

' its strong topological dual.

Consider the stochastic differential equation

(I) dt = A'ttdt+Pt'Ctdt+dWt

0= Y

where: (Assumptions)

Al). - y is a '-valued F -measurable random variable such that for some r0 > 0

EII2  <oo

Ell -y1r ° <

A2). - W = (Wt)t>_O is a '-valued Wiener process with covariance Q. This

implies that there exists q> 0 such that

W. E C(]R+ ; ') a.s.q

A3). - For each t >0, At :(D- 4) is a continuous linear operator that satisfies

the following properties:

a). - The map t-A t is continuous on D for each 'P c.

b). - (At)t>0 is the generator of a two parameter semigroup (evolution

operator) {T(s,t) : 0: s! t< o} i.e.

T(s,t) = T(s,t')T(t',t) 0 -<s < t? < t /

T(t,t) I,

(s,t) = T(s,t)A E 0, s- !t (Forward equation), .......... 4

dT(st)0 = -A T(s,t) P E'D, s t (Backward equation).

p ) .

ds
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and T(s,t) satisfies the following conditions:

c). - For s< t T(s,t) :I)- ( is a continuous linear operator.

d). - lrn T(s,t)p= T(s,t 0 ) in the (D-topology for each s fixed and

0!+ to l E D

e). - lrn T(s,t) = T(s,t) P in the (D-topology for each t fixed and
sts

f). - For each T>O0 and n O0

sup fT (s, t) nl<-~ for all E(D

The next assumption concerns the perturbation operator P

A). - For each t !O P t: D-(D is a continuous linear operator on (D and

there exists a family of seminorms {111-111m : m O} on 4) defining an

equivalent topology on 0 to that given by the Hilbertian norms

{lHU11 : n O01 such that the following three conditions hold:

a). - For each T> 0 there exists m T > 0 such that for each m m T and

s:5T, P shas a continuous linear extension from 0I to (DM

(denoted also by P s), where 01,is the 11-1mcmlto of

(D and

b). - for each E 0 the map s -P s p from [0,T] to (DIm is 4)Im

continuous for m m T9

c). - sup IIPST(s, t) IIIr m K(m,T)lI 111I for all E( form MmT

and some constant K(m,T) > 0.

Remark 1. Condition A(c) above can be obtained from A(b) if we assume

that for each T>O0 and m O

sup lllT(s,t) 11 mI D(m,T) 1 11 Il for all 4E (

for some constant D(m,T) > 0.

* A.~ ~* ***~*** ~ ~ ** * ****'*%
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Remark 2. Some authors, as Kato (1976) and Tanabe (1975), consider two para-

meter semigroups T(s,t) on Banach or Hilbert spaces assuming that T(s,t) is

continuous on all the domain {(s,t) :0:s ts T}. This is a stronger condi-

tion than A3(d)-(f).

In order to solve the SDE (I) we first consider the solution of the un-

perturbed SDE

dyt =Aln dt + dW

n0 = Y

for which it is possible to write a solution explicitly. This is done in

Section 1 and is an extension of the work by Kallianpur and Wolpert (1984)

and Christensen and Kallianpur (1985) who considered the case when At = A

t O is the generator of a strongly continuous semigroup T . In Section 2
t

we solve the SDE

t

= T(s,t)'P' ds + jt
0 t

and show that the solution of the above SDE is also a solution of (I). In

Section 3 we extend the previous results to stochastic evolution equations

with a nuclear space valued martingale as a driving term. Section 4 contains

special cases and examples recently considered by Christensen and Kallianpur

(1985), Hitsuda and Mitoma (1985) and Mitoma (1985). It is important to ob-

serve that the last two examples of Section 4 are instances where the two

parameter evolution semigroup T(s,t), its generator A and the perturbator Pt t

can all be defined directly on a countably Hilbertian nuclear space D so as

to satisfy the above assumptions AI-A4. However, it is worth noting that, in

many cases, these operators may be more naturally defined on a Hilbert or

Banach space, as e.g., in the Example 4.1 or the works by Dawson and Gorostiza

(1985), Kato (1976) and Tanabe (1975). In such cases the problem of finding



a P for which the assumptions concerning At and Pt are valid, has to be solved

first before our results can be applied.

I

.4

'r -,q a , -, - ." , ,e . ,- . ,.,. -.-1o* - . ~ - ' " ° . . . . • * - , . . o .. - . , . - ,. ,, . -
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I. Solution of the Unperturbed SDE

In this section we solve the SDE

r d~t =A' dt +dW
t tt t

where for each t>-0 A' : '-' is defined by the relation (A'F)[]= F[A ] for
t

all FEV', E (.

Definition 1. We say that the SDE(II) has a '-valued solution ) = (t)_ if

the following four conditions hold:

a). - ( t) is F -adapted and '-valued.

b). - ;E C(]+; V') a.s.

S m = ym] + f~t [A f]ds + W [0) for all OE D a.s. t 0.
c).~~ -=¥,+f0 s st-"

d). - For each T> 0

E( sup J t[i j2)< _ for all 04 D.

Proposition 1. If = ( tt>O is a solution of the SDE(II) then for each T > 0

there exists nT>O and a version of E (also denoted by ) such that

T, sT C([O,T ;V' ) a.s.

nT

and
t

t[] y[= ] + s A ]ds + Wt[f] for all PE , 0< t 5 T a.s.
t 0

V, Proof: Given T >0 define

G E( sup 1 [t 12 )<

T 0 t<T

Then by condition (d) in Definition 1 GT(P)<° for all p E and clearly G

satisfies the conditions GT(l+ 2) -- GT( l) +GT( 0 2) for ',2 E and

GT (at) = JaT a E ,E P. Next since supo<t<_[t I] 2 is a lower

% % % -t
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semicontinuous function of , by Fatou's Lemma GT () is also a lower semi-

continuous function of P. Then by a Baire category argument there exist

aT >0 and rT >0 such that

E( sup it[ ] 2 ) 6  2  for all E D.
0<tT T rT

Let pT > rT such that the injection map P p - is Hilbert-Schmidt and let
PT rT

{j}j cD be a CONS for D with dual basis {j I a CONS for ' Then
T ->PT j lPT

- E( X sup 1 t[ j]1 ) _< 0T 11¢j1 2 < Co
suj=l 0-t<T 2 T j=l rT

Define

T : X sup It(w)[ I 2 < °}OaT ~~j=1 0-t<T

then P(Q T ) = i. Next define

^ C t (W)I W¢ ] Qj w T
' " t (W)1 = j=1

-Hence, t EV a.s. and t(W)[ M t -[ fo-l ED0tTadw2TPT

' Moreover by the dominated convergence theorem if t,t0E [0,T]

lim (_ (w)-2 =im (W)[ 2
t t 0  - t-t0 j=l 0

Im 0.

oj=l t-t 0i 0~ ]- o ] 2 =O

Thus s C([0,T];.D' a.s. and therefore

^ 2 < 00) =
P(w N NT(W) :t<sup ltII_p T

0! t!T TT

.'0.X% Io0

1 2 %

Iurn "'t"w)"%"(w" " '= urn " (""(w)[".]"- " "w)""."
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From now on we will write t instead of t'

Next for wE QT and 0<_ t <-T, for E P define

t
Yt(w)[f] = fCs(w)[As]ds.

0

We shall show that YT(w)E C([O,T]; P ) for some mT> 0. Suppressing w in the

writing we have that
t

IYt[f]I - NT f 1Asfl1pr

Then using the continuity of the map s -A s for all E P, by a Baire category

argument there exist 6T' >0 and mT >p T such that

sup IYt[]I 2 < (NT)2 .II 2  for all E .

0<t_<T T

Then Y (w) ' for all 0-<t-<T wE T Next let Z >m be such that the
t m TT T T

injection map DfT-?mT is Hilbert-Schmidt and let {ej} jicP be a CONS for

T T
(P with dual basis {f j> a CONS for <'I . Then

ZT J j T

sup IY te ]I2 < (N 0')2 X lie.II 2  < 0
j=l 0<t<T T j=l mT

Next from the inequality IYt[fI NTf 0 1II T ds we have that Y- 0 [4p is a

continuous function of t on 0- t -T for each cE D. Then by the dominated

convergence theorem
00

lim IIY Y 11 = lim I (Y [e I-Y [e = 0 t,t0 E [0,T]

,t-t o0 t to0 Z T t- t0  j l ( t ] t to

T",i.e. Y (w) E C([0,T];'D' ) E Q T

Then we have shown that ftAs' dSEC([O,T]; )' a.s. for some >0. Hence

taking n T=max(roq,p ,T ) we have that

--1 -,T Il. T TJ, ," .' '
..

LK A-
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Z= y + fA'd as + W E C([O,TI;4T ) a.s.
t 0 s s tT

Hence by conditions (b) and (c) in Definition 1 P(Zt = t 0- t T) = 1 and

the proof of the proposition is complete. Q.E.D.

Remark 3. The following sufficient condition implies condition (d) in Defini-

tion I: For each T> 0
.1*

.1"-* T 2
EJ(,s[Asfl) ds < o for all E $.

0

Theorem 1. Under assumptions AI-A3 the SDE(II) has a unique '-valued solu-

tion t= ( t) given by

t

= T'(0,t)y + fT'(s,t)A'W ds + W t>0_t 0 t

i.e.
t

(1.2) .. [f = y[T(0,t)l +W [A T(s,t)]ds + W [P] for all Eh' .::: (.2) t[@] y[T( ,t)$ + 0 s st"

0t

Furthermore, for each T>0 there exists T > 0 such that
T

IT
:'; '£ :C( [0,T] 'D' a.s.

' T

and

E( sup )1 t112z <
0.t!<T T

*.4

. * . . . . . . . . .

. . .J-. --p' * ..
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For the proof of Theorem 1 we will need the following two lemmas.

Lemma I. For each t->0 let B :D- be a continuous linear operator and sup-t

pose that the map t-B t  is continuous in the c@-topology. Let

{T(s,t): 0-<s!<t< -} be a two parameter semigroup on D.

a). - Under assumption A3(c)-(e) the map s-B T(s,t) is continuous in the

C-topology for 0<- s-5 t <-, P E 4. Furthermore for p2!0 and t> 0

sup IB T(s,t)@JH < for all dt D.

b). - If in addition we assume A3(f) then for each p> 0 and T> 0 there exist

r =r(B,T,p) > 0 and D=D(B,T,p) > 0 such that

sup JIB T(s,t)Jji < DIfI r for all P cP.
0<_s: t<T s

Proof: a). - Since for each t >0 Bt : -D is continuous then for each p > 0

the function g t J is a continuous function on D and hence a lower

semicontinuous function. Thus if t- O

Gt(p) = sup 1iBsI E (D

0s<t

is also a lower semicontinuous function. Moreover since the mapping s- B
s

contnuou G c(ci)+i2) < Gt(¢ ) + ( 2
is continuous then G(ci) <- for all OE (D and clearly G t  + (,

Gt(aI) = aIG t0 2) for GE IR, i,2 E(. Then by a Baire category argument

G M() is a continuous function of i and there exist e > 0 and r > 0 such that
Stt

G('1) -gtl[i)I r  for all i) .

t

Hence for each s < t and tE 4

J p t IWI for all E (DE

and therefore for any sI < t and s2 < t

JIB s (T(s1, t~)$-T(s 2, p~- t T(l,t )-T(s2 t) lr for all
s t
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Then if s t s 00_ s< s 0 < t

JIBsT(s,t)- B sT(s0 , t) 1 p  I1Bs(T(s,t)>-T(s
0 ,t) ) { p + JIBsr(S0,t) -B s0T(s0,t)I

< et 11T(s,t) -T(s 0 ,t) lrt + JBsT(s 0 ,t)-Bs0 T(sot)(l

which goes to zero as st so, the first term by assumption (A3)(e) and the second

one since s- B sp is a continuous mapping.

Hence the mapping s-B T(s,t) is continuous in the D-topology on
s

0<-s<-t <- and E D and therefore for n-0 and t-0

sup JIB T(s,t)Jj <o
0<s< t  s

which proves (a).

b). - From (a) we show that

GT( ) = sup 11 Bt Ilp - @TI . for all E(

0<t<T P5 rT

i.e. ) T)4 T for all 0 E P 0 !5 t !5 T.ie Is Ip T rT

Then for 0<_s5t<T
JIBsT(s,t) p T s r T  for all 4 El.

Next defining VT(cp) = sup0<s<t_<T IT(s,t) IIrT by A3(f) VT( ) < . Then since

V T() is lower semicontinuous, VT(0 I + 2)  T (0 1 +VT(02) and VT(a I) =

JalVT( I) aE R, lo 2 , by a Baire category argument there exists

>0 and r'> 0 such that
T rT

V T (M# <5 6' P Jr for all E (

i.e.

sup JIB T(s,t)O{ p -< D T IWI r
0 s!t<T sT

Q.E.D.



Lemma 2. Assume A3(a)-(f) and let B be a continuous linear operator from (D

to 0. Then for each F E V and 0 ! u t

t
a). - F[BT(u,t) ] -F[Bf] + fF[BT(u,s)Aps ]ds for all E(

U

t
b). - F[BT(u,t>fl] F[B41 + f(F [BA sT(s,t)cplds for all E D.

S

Proof.: From A3(b)-(d) we have

-d T(us)o = lim T (u, s+E:)PT (u, s)~
ds ES4-0

= jim. T(u,s)T(s,s+_)4- T(u,s), = T(u,s)Ap

i.e.

ds

Let r F > 0 be such that 11 FII1_rF< -. Then since B :(D-~ (D is continuous there

exist O = 0 > 0 and r = r B> 0 such that

IIBiII r ! 6 B 11P 11 for all ipc D

Hence using the above inequality, Lemma 1(b) and A3 we have that for T> 0 and

0! u:5 s <T

IIB~u sS 1r :5 e B IT(u,s)A s filr - B Djjjjr for all 4 E (

for some r> 0. Then

sup IF[BT(u,s)A S ]I 1 -- lFIj~ sup IIBT(u,s)A scPI1r <-~for all El)
0!5u~s:T F O!Wu5s:ST F

and F[BT(u,s)A s I is integrable on u! s T, T> 0.

Hence using the Forward equation, since F and B are continuous on

tt

=FB~~) f]d = oFB~~)]s FB~~~l-[Tuu
u u

W"t
I .IFBR ~ )]s=F[Tut4 [Tuuf
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t
i.e. F[BT(u,t)fI = F[BfI + fF[BT(u,s)A slds

uSU

which proves (a).

b). - As in (a) we obtain the Backward equation

d T(s,t) = -A T(s,t)4
ds s

Taking B = BA in Lemma l(a) we have thatSS S

sup [IBAsT(s,t) PIIr <o
0<s5t F

and hence as in (a) IF[BA sT(s,t)o] is integrable on 0<u!s-t. Then using

the Backward equation and the fact that B and F are continuous we obtain that

t t dtB d
fF[BA( s,t)=]t) ]d=-fdF[Br(s,t)]ds = -F[BO] + F[BT(u,t)o]

U u u

i.e.

F[BT(u,t)O] = F[BO] + JF[BA T(s,t) ]ds.
U Q.E.D.

Proof of Theorem 1. Let

= {w EQ: W.(w) E C(+ ')} n{w : IIy(w) I }r01 +'q

then by Al and A2 P(QI) - 1.

Let wE Q I (we will suppress w when there is no conflict) and let T> 0.

Step I. We shall prove that for each 0-t-<T and WE Q the map

t
Y Y (w)[fl = fW (w)[A T(s,t)olds

is a continuous linear map, i.e. Y t(w) E

If we show that the integral is finite then clearly the map Y is linear.

Define
t

Kt (4) = fIAsT(st)flIqdS E ds.
0
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Then since A and T(s,t) 0:5s<-t-<T are continuous linear operators froms

4D to 4, if - in 4)

IIAsT(St) njm n IAsT(s,t)1Ilm all m > I1.

Then by Fatou's Lemma K () is a lower semicontinuous function on 4) and by

Lemma 1(a) K( ) <00 for all 4). Also Kt(c 1 + 2 ) _K t(l) +Kt( 2 ),

Kt(a I) = jaJK( 1 ) a ER, i,22 E D. Then by a Baire category argument

there exist S > 0 and r > 0 such thatt t

Kt(4) -e M tIlI r  for all E4).

t
Thus

t t

LfW S[A T(s,t)pIdsl !5 sup I[W JIf liIA sT(s,t) j ds

0 0:5s:T q

!5<sup IlWs ll l r  for all E(

0!5s T qt

and therefore ftw [A T(t,s) ]ds is continuous and linear on 4D i.e.

t
fT(s,t)'A'W s(w)ds E ' 0<t<T.
0

Then from (1.1) t (w) ' for each wE I and t >-0.

Step 2. We shall prove that ( )t>0 satisfies (c) in Definition 1, i.e.

it must satisfy that for each t > 0 with probability one

t

(1.3) t[ ] M- y[O] + Wt [] + f s[A lds for all O (D

0

Applying Lemma 2(a) to B=I, F=y and u=O we have for all E
4 )

t
(1.4) y[T(0,t)l - y[o] + fY[T(O,s)A SOds.

0

Taking F=W and B- A in Lemma 2(a) we obtainu u

t

(1.5) W u[AuT(u,t)] = W[Au] + fw [A uT(u,s)As O]ds.
u u 0 u
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Using (1.4) in (1.2) we have that for 4E D

t t

t = y[] + fy[T(O,s)A s]ds + W [ ] + fWu[A T(u,t)C]ds0 0

and using (1.5) in the last term of the above expression and applying Fubini's

Theorem we obtain that for all E
t t t

t[] y[p] + fy[T(0,s)A sf]ds + W [P] + f{Wu[Au ] + JWu [AuT(US)As]ds}du
0 0 u

t t t s
- Y[Aof] + Wt[] + fy[T(O,s)A]ds + fW [A q]ds + f (fW [A T(u,s)As]du)ds

0s 0 s s 0 0 u  u00 00

t s

= y[M] + w q]+ f{y{T(O,s)Asf] + Ws[Asf] + f Wu[AuT(u,s)A s]du}ds
0 0

t

= y(CH + W p] + f s[A s Ids
0

t

i.e. t [] = y[M] + Wt [] + f s[A s]ds 0-<t-<T a.s.
t 0

and therefore (1.2) satisfies (1.3).

Observe that (t,w)- (w) is B(O')/B(]R+)e F-measurable and for each

t 0 C is FW'Y-measurable where
t

FWY = a{y[q],Ws[p1 :0 s-- t, E
t 5

Step 3. For a.a. w P t-Et (w)[fl is continuous. Let wE 1 . From (1.2)

it is enough to show that

t

[p t JW s[A ST(s,t)flds

is continuous on t for each E (D. Let T> 0 and O<t 0t0 t<T , then

t to

(1.6) Y - Yt0 [fl = fW u[A uT(u,t) ]du - f Wu [AuT(u,t 0 ) ]du

0 0
to t

f {W [A T(u,t) ]-W [A uT(u,t 0)cp]}ds + f W u[Au T(u,t) ]du.

0 to

- - -All
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Using Lemma 2(a) with F=W u , B=A we obtain

t
W u[AuT(u,t)p] = W u[Au ] + W u[A uT(us)As]ds

u

and agai applying Lemma 2(a) to F=Wu, B=Au and t = t o

t0

W u[AuT(u,t 0)] = Wu[Aufl + f Wu[AuT(u,s)As]ds
u

and therefore
t

{W u[Au T(u,t) ] - W [A T(u,t 0 fW} = [ W[A T(u,s)A ]Ids.
to

Using the last expression in (1.6) we have

to t t

Yt[P] - Yt0[fl f f u[Au T(u,s)As fldsdu + f Wu[A uT(u,t)o]du.
0 0 t0 t

From Lemma 1(b) for some r =-rI(A,T,q) >0 and D= D1(A,T,q) > 0

sup IIAuT(U,S)As IIq !' DIMIILr for all* E(.
O_<u:5s<Tu

Hence
to t t

IY[c] -Yot l f f IWu[T(u,s)As lidsdu + f IWu[AuT(U,t)f]Idu
o t0  t 0

: sup IWII{t (t- r (t- to)DjI4IIr}

i~e fo 0t0-o IYt] - Yt0[lI <- sup 11Ws5 _q TDIqjIr (t- to)

and similarly if 0<! t <5 t 0 -!5T

IY t[W - Y t0[M I -0 s u p T IIw s I - q rTD 11 jj r ( t 0 - t)

0 0!5S:5T -

i.e. for w 1 and ED

.X N- •- , .- , ., - , - , .' - -' -' - '.' . '- -k' ' %. '- °- ' ', ' % , ."-"-" .% " S, % C%'
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Yt (W) [M - Y t(w)[pI 0sup 1Ws(W) llqTDfl lIt - t0 tto [0,T].

Hence Y t(w) [ ] is continuous in t for all q E 4 0-< t <T on a set of proba-

bility one. Moreover from the above expression we obtain

(1.7) sup IY (w)[II < sup 1IWs(w)1- T DIVPI for all E
0<t_<T t0<s<T -

Also from the last expression and (1.2) we have that condition (d) in Defini-

tion I is satisfied.

T
Step 4. We shall prove that .E C([O,T];' ) a.s.

Let WE " Then from (1.2) we have that for t0 ,tE [0,T]

t(w)[] -Ct0(w)[ ]i < ly(w)[A 0T(O,t)4] - y(w)[A0 T(O,t)lJ]

+ IYt(w)LPI -Y t(w)[I + IWt(w)(0I - W t(w)[P]I

Hence from Al, A2, Lemma l(b) and (1.7), for mT>max(rQ~rrA9q)

Ic l(w) M- t(w)[fl]I < {20sup IIWt(w) 11 q + Ily(w)iI_ }KTHIlm

for some constant KT which does not depend on w nor t and to.

Also from (1.7), (1.2) and the assumptions on W and m

E( sup (t (fl) 2 C211li2  for all E(
0-<t<T T mT

for some constant CT > 0.

Let T > mT be such that the injection map 4 -e- T is Hilbert-Schmidt
T T T M T

and let {j l } D be a CONS for with dual basis { a CONS for V

Then
oo 2 2 < o

E( sun D [ ]2 < C < 00.l~m

j=l 0<t<T J T j- m

Let

2 J=l 1
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and define t(w) = E._l~t (wi)[]j 1$for wE Q, zero otherwise. Then

3-O

E( sup IHE 1I2 T  C 2 IkP.II 2 < 0

0<t:T T j=l T

and if wE 2 and t 0 ,tE [0,T]

00

lim IIt(w) - (w) 11T2  rw) 2

t-t0 t t0 T t-*t 0 j=1 0

00

S lir ( W I (w)0))2 = 0.
j=1 t-*t0  t t0

Then T(w) E C([0,T],(T) wE E2" Moreover
ZT 2

00 
03

t (w[I Ij t (wm[]i ] =  i~ M Et (w)[0 J]< ,' j > Z

= Tt()I~~P

00

I[ Et(w)[<0 J >-TiJ] t St(w)[@] for all OE 4, OSt T WEQ 2 .

j=l

From now on we write E instead of .

Hence we have shown that for each T> 0 there exists tT such that

E C([OT] ;(D a.s. i.e. E C([0,T];') a.s. Then if Qr {W T E C([O,T] 4')}

P(T )= 1 and taking T +- and = n Qn we have that for wEc Q (w) E C(]R+; '),
T n n=ln+

i.e. condition (6) in Definition 1 is satisfied.

Step 5. Uniqueness. Suppose that there exists a V'-valued process t= ( t)

that is also a solution of (II). Then by Proposition I for each T> 0 there

exists a set S3 of probability one such that if wE 03

=T
(W) E C([0,T] ;' ) some pT

PTT T

and
t

(18) t(w)[l y(w)[l] + s (w)[Asf lds + Wt(w)[] for all tE4) 0- t!<T.

- C . 4 -..-.
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Fix w Q 2 n Q,. Then, suppressing w in the following, if in (1.8) we replace

by A T(s,t)p we have
s

W s[As T(s,t)4] = -- [A sT(s,t)f - y[A sT(st)] - fC [Au A T(st) ]du.
0

.A Hence, substituting for W s[A sT(s,t)f] in the expression on the RHS of (1.2)

and using Fubini's theorem we have

t t
(1.9) t[l] = y[T(0,t)4] + f [A sT(s,t)flds - fy[AsT(s,t)flds

0 0

t t
- f f [AuAsT(s,t)ojdsdu + Wt[O].
0 u

Applying Lemma 2(b) to F=y and B = I we have

t
(1.10) fy[AsT(s,t)o]ds = y[T(0,t)Ol - y[O].

0

Again applying Lemma 2(b) to B=A and F= u we obtainU U

t

f u [A uA sT(s,t)OIds = C[AuT(u,t)P] - uAuP1.
u

Finally using (1.10) and the above expression in (1.9) we have

t
t[P] = y[T(0,t)p] + f E [As T(s,t)f]ds - y[T(0,t)O] + y[O]

0

t t
- f [A uT(u,t)O1du + f [A u d u + W [p]

0  u0 t

t
= y[] + f -u [Au ]du + W [] = Y[1

0

Thus for each T> 0

"(w)[0] = (w)[fl for all cfEl 0:_t:_T wE 2Q nQ
t t 2 3

Then we have shown that for each T> 0 there exists a set Q T of probability
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one, such that for W Q T  t(w) =t (w) 0- t -T. Let T t o and define

= T , then

n= n

= t>0) = 1
t t

which gives uniqueness of the solution. Q.E.D.

We now show the semimartingale and Gaussian property of the solution of

the SDE(II).

A V'-valued stochastic process (X t)t_> is said to be a V'-valued semi-

martinglae if for each (D X [4] is a real valued semimartingale i.e.~t

xt[] =x0 +M0 t Vt

where M is a real valued local martingale M = 0, V a real valued right
0 t

continuous adapted process whose paths are of finite variation, and X is
I, 0

an F0-measurable random variable.

Proposition 2. Under the hypotheses of Theorem I, the solution d = ()4 t t-O

of the SDE(II) is a '-valued semimartingale with canonical decomposition

t
= W + {T(0,t)'y + fT(s,t)'A'W ds}.

t 0 S

Proof. From Theorem I we have that the solution of (II) is the '-valued

continuous stochastic process = ( t) such that
t

(1.11) _ [I = y[T(0,t)p] + fW [A T(s,t)f]ds + W [ ] for all EC.t0Os s t

In step 3 of the proof of Theorem I it was shown that the 1'-valued process

t
Yt[fl = fW [A T(s,t)f]ds0Os s

00is continuous. Moreover it was also shown there, that if O< to 0!t <-T then

4, -.- , - - . - , - ,,'." , .%,%
.6 ~ .9/pj. *(.P4 ~ ,.V V '4~2' %
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(1.12) lYt Ml - Yt0[ ] 0! s sup w II_qTDJII11r(t - to00 OS rSt!tOT

Hence from (1.12) we have that for all T>0 Y (w)[] is a process of finitet

variation for w in a set of probability one.

Next define

g(t)[I] = y[T(0,t)p].

Then using Kolmogorov's Forward equation

dt(t)[P] = d y[T(0,t)p] = y[dT(0,t0p] = y[T(0,t)At ].

Next defining GT (() = suP 0t<T IIT(0,t)AtIro from Lemma 1.2(b) and assumptions

Al and A3(a), GT (() <- for all 4 E 4. Then using a Baire category argument

GT(s) 5 OTIIjr T for all ( E E.

Hence, the function [T(0,t)A t ] is bounded in (0,T) which implies that g(t)

*is a function of bounded variation on [O,T]. Also clearly g(t) is a continuous

function of t.

Next define
t

V [] = y[T(0,t)p] + fW s[A sT(s,t) Jds.
t 0

Then Vt [(] is a V'-valued continuous process such that for all (E 4 V t[]

has paths of bounded variation. Moreover since Y[T(0,t)] and Yt [(] are F t -

adapted then V is a predictable process. Hence we have the (unique) canonical~t

decomposition

(1.13) Wt((] = Wt[P] + Vt[(] for all $c (P t 0 Q.E.D.
t t t

Proposition 3. Assume the hypotheses of Theorem I and suppose that y is a

* (p'-valued Gaussian random variable independent of the '-valued Wiener pro-

, cess W= (W t) with covariance Q. Then t is a '-valued continuous Gaus-t t0 tsa -audcniuu as

sian process with covariance

.' °.' --. '% . ' -" . " .
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t t

(1.14) KQ ,.p) Q Q0 (T(0,t) ,T(0,t0p) + ffmin(s 1~s 2 Q(A T(!1,t> ,A T(S2 ,) 'ds, ds2
00 S, S212

+ Q qqlp Ep t O

where Q 0is the covariance of y.

Proof: Since fOW [A sT(s,t> ]ds and Wt[ ] are independent and

y = ftW [A T(s,t) ]ds is Gaussian with covariance

tt

E(Y t yI) ff(min(ss 2 ))Q(A s,0,A T 2tyd 1s2

then the result follows since y is independent of Y tand W



2. Solution of the SDE with Perturbation

In this section we solve the SDE (I).

NA Definition 2. We say that the SDE (I) has a V'-valued solution =( t) O if

the following four conditions hold

a. (t ) is F -adapted and V'-valued.t t

b. C (R+;V .

C. gt[ ] = y[p + ft [As ]ds + frs [PsP]ds + W [* ] for all E (D a.s. t 0.

d. For each T >0

E( sup t[V]I 2 )<o for all , ED

The following result is proved in the same way as Proposition I.

Proposition 2. If = ( t ) is a solution of the SDE (II) then for each

T> 0 there exists nT> 0 and a version of (also denoted by ) such that

J. C([o,T]r]P ) a.s.n

T
and

t t
-t[p] = y[p] + f s[AspIds + f/ [Ps lds + W [t] for all c (I, 0 - t<T a.s.

t 0 0t

Remark. Condition (d) in Definition 2 is implied by the following one:

For each T > 0

T 2 T 2
Ef( [A s]) ds + Ef( s[P s]) ds < .

0 0

In order to solve the SDE (I) we first solve the following stochastic

equation:

t
(III) t f r'(s,t)P'ssds + T t t>-0

0
i.e.

t
t] f [P T(s,t)f]ds + n t[] for all (D

0 t

% %..-



where nt is as in the following theorem. Then taking nt as the solution

given by Theorem I we obtain the solution of (I).

Theorem 2. Assume that A3(b)-(c) and A4 hold and let = () tO be a

valued continuous stochastic process such that for each T> 0 there exists

qT > 0 and

E( sup Int12 ) <

05t<T T -qT

Then there exists a unique V'-valued solution (t)t0 of (III) on

C( +R + ') with the following property: for each T> 0 there exists p T 0

such that

E C([0,T];D' ) a.s., E( sup 111t11
2  < OD)

T 0<t<T pT

and

t

= P T(s,t)c]ds + nt [] for all qE D 0< t <T a.s.

Proof. (By successive approximations).

Let T> 0 fixed and

Q= {w: sup lln() II <140<t<-T -qT

Then P(Q 4 ) = I.

Let wE 2 4 and define for 0< t-<T the sequence of successive approxima-

t ions:

0ti Mt w = rit(W )

I' t0
. (w) = frT(s, t) 's (w)ds + ( 0)

n • t n-1
4n(w) =fT(s,t)'P' Mwds +rl (w)

t 0 ss t

that is (supprLssing w in the writing) for E D, 0-< t- T and n - I

.' .- '-,-""" ,°",' -''.'''- "L :,,,'% -''" -' '. -- ,'"' , ''.- """£'"- '' "' .- "- "''- -" -. : """- -%-.' .. ''',"'L "''-. X
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t t

2 ti t[ =r £s[P sr(S,t) ]ds + q t[]

n _ n-I
(CP A fE (P sT(s,t)tplds + n t MP.

0 
t

Step 1. We shall prove that the above expressions are well defined elements of

' for all n->l and t 0. Let

(2.1) CT = C (W) = sup11$ 0(w) I = sup 11n <T 0<t-T -qT O<t<T -qT

Using assumption A4, given q T > 0 there exist positive constants

Cl =C 1 (T qT ) , C2 = C 2 (T,q T ) , m T =m T (qT ) and qT 
> q T such that

(2.2) M! -< C1 IIIfmT 2 C2  I for all 0 P

Also by assumptions A4(a)-(c) we have

(2.3) sup 117sT(st)JIj K T for all cE(P.

0<st<T 111  T mT

Let wE Q4 and define (suppressing w in the writing)

J

Ml[* = nt[¢M
t t

and for n -2

t It2( ) = 0;l[PssT(S' ]dsft[ i =  sPT(s't)4,]ds+rit[4]
(Mt) = As[P T(s,t) )ds+ q [] = f 5 ([

" 0 0l
3 t2

t = A s (P sT(s 1 ,t),)ds-rj [4,]

t s 1' 2 t
= f f % [P T(sl2 9s)P sT(sl't)4]ds 2ds I + fs [PS T(s1 ,t)4]ds 1+r

0I 00 2 2 1 0,1 1

%,
d., %.- . . .'. .'- - , '.' -- " ,.'- 

"x
% '- "- ":'",' . "- ". .'' '," . % "." * ." ," ." ".' .'' ,'' .'* °' , . .' ' " ' .% " " ''.' %-M 1
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0 n (P T(s 1t))ds + n[ ]

t s S
Sfl... f n-2 n [P T(sn-l sn2 ) P sT(sl,t)4]dsnl • ds 1

(2.4) 0 0 0 n-i n-I I

+ f l n-3 n [P S T(Sn2,Sn3). P T(s t) ds n2 dsI

00 0 n-2 n-2 "

+...+f t[.

Observe that the above integrals are well defined since using (2.2) and

(2.3) we have

t s I in-2
0 0 . 0 [P S..P T (st)f]Ids. . dsI
0 0 0 n-I n-I 1 n-

t s S
0 0 0 n-i I T

t S S -

(2.5) _< C T CI i f.. fn-JJJp T(S nl, Sn2) P ~t) Jj sn -'. ds 1I
0 " 0 Sn-I 1'Pl~l  mTdnI"

t s .-

T 0 0 n-2Tnl I mTdn-2

,,)n 
,K ) n

- T n! mT TCI n! TnIIlc1IImT< °

Then each integral in (2.4) is well defined and furthermore from the second

inequality in (2.2), for all n I and 0< t!<T we have

n (K T) k

(2.6) M(w)(p)I < C(w)CI(k! k -- I)CmlIq for all Oc4

Then for each n-l and 0< t:<T t (w) E ,(
t

n (K T) k KT
(2.7) I<_q )I T(W)CC2 k ! T CC 2e

T 12 k' T

al~y k10



26

and we can write Et(w)[I] = Ct(w)() WE

Step 2. The sequence ( n) converges.
t

From (2.4) we have that if m!n

-n t t s s

t t - M = f n...fn- I [Ps T(sn-isn-2)...PslT( 9 t)]ds... dsI0 0 0 Sn- 1  Sn_ 1

.-'+ 0 '' [P s T(sm 'sm ) M 'Ps T(sl t)0]dsm ' 'dsI
0 0 0 5m 5mI

and proceeding as in (?.5)

(2.8) C't[c] - t n-C C IT l for all E..k! 'L 2 1 kk=m+l T

Then for each (P and WE~ 3 Q~ [~- 1,[,I converges to zero uniformly

on [0,T] as n>m --. Hence { (w)[ ]} is a Cauchy sequence of real numbers
*t n~l

and from (2.6) for 0<t<T

IimO(w)[p]I < CT(w)CIC2 e TC Ce , for all ,E*.

Hence for 0<t<T and WE Q 3  Et(w) defined by

C (w)[] = lirn t(w)[ ] for all 4ED
. n-  t

is such that
~KTT

sup 0 tT(w)[]I < CT(W)ClC 2e T IIIql for all ED

and therefore t(w) is a linear functional on (, i.e. (w)E '. Moreover

from the last expression we have that satisfies (d) in Definition 2.
Next let Y-T > q' be such that the injection map (D C q is Hilbert-

T T
Schmidt and let {i }>_ E lD be a CONS for (lT with dual basis { j} CONS in

~' .ThenlT

,~
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00 2 2 2K T
sup Y I (W) C (M CC 2 e  T < 2

0t T j=1 J Tw 1I 2  j=l q <

and we can define
00

t ( w) •

Hence t(w) e lT 0-<t-5T wE Q and moreover (w)[M1]= (w)[ ] for all E4':
t T 3 t t

Y w)lp =l~ W i1 = jl w (w)IIM>fT

j=lt 'J z T J n-*w°  j=l

= t( li) [w)[.

- t (W)[MI.

Step 3. t satisfies (c) in Definition 2, i.e.

tt

P(W E t(w)[] = As(w)[PsT(s,t)4]ds + qt (w)[] for all () =1 0 _ t<T.
0t

Let WE f2 3, E and 0-<t <T. Then

t (w) I] = n -'(w)[P s T(st) ] ds + n t[M.

Next, by assumptions(A4)(a)-(b) and Remark I, given ZT  0 there exist positive

constants dl,d2,m' and £4 such that

(2.9) jl~IKlT < dl I[Im, < d2II1IIl, for all E4.

Then

0:sup Hs T(st)J 5 d1  sup 1liP T(s,t) ml,
0-st<-T T 0,stST

N -W N -6.j:.

_< lD~l ll.m
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and using (2.7) since Z>q

T T

GC C C2e KTd IDIlIII ,v<~ for all n 2 1 0 : s t T.

Then using dominated convergence theorem

C [ M = Iimcn [t lim fts[ T(s,t)4]ds + nl [t

t

A 1P5[P T(s,t) ]ds + q) [c for all 4E( , 05t5T.

Step 4. T-E C([0,TI ;4' )some p T> 0. Let toit E [0,T] T> 0. Assume

. t0 <t, then

t 
0

(2.10) t [1-~ [ t =fC [P sT(s,t) p]ds- f s [P ST(s,t 0 ) ds + n t LPI tM
0 0 0 0

But
t to
f [P WT(W,t) p]dpj - f [P PT(Pt0)d
0 0

t 0t
=fO( [P PT(v,t)pI- [P P [(It0)$)j f&P(P PT(k,t) P]d..
0 TtItf~~+ 0

Next using Lemma. 2(a) with F =C B= P P, we obtain

t

S[P T(vi,t)4] =~[P 4] + fC, [P T(11,s)A P]ds

and again applying Lemma 2(a) to F=E , B=P W t= t0

t~r

W [P 11T(P ,t 0 , 1P JW + [ 1 ,s)As$

and therefore
t

F, [PT(w,tMf W 1 P 0T(p ,t 0) f P [P 11T(W,s)A s Ods.
to0

I 1 II1I
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V Hence,

t t
f P [P T(W,t) pIdp - fu [P PT(P, t 0 >ldw

(2. 11)
t t t

= j f W[PT (, s) A s dsd-P + f ,[P~~)]
0 t 0  to

By assumption A(c) for m1  n TSome n T> 0 and T> 0

sup HIPS T(s,t)pIjI K I(m 9T) IIIIM for all E (D

and using assumption A3(a) and a Baire category argument, for some m' m

and K(m' ,T) > 0 we have

0sup~ IIIPS T(s~t)A S0IIml K(m',T)IIkpIII, for all E D.

* Moreover sup 0 < JI1 I <- since from (2.7)

TK
su II,!5 s up i gnj,! C CC e T< 00.
0! t!T t T O<_t:!T qT T 1 2

Hence, using the last three expressions and (2.9) in (2.11)

tt

(2.12) [ T(q)Iv tI0IP Ts)($t)fdpIsfII IPTpt(Id

t0  T t0  T

T

TK
where D T=d 2C GY e T Then for all t,t 0 [0,TI

T 21 0

IA W [PP T(W,t)p]dp f E0 P [PPT(p,t 0 )fIdj It- t 0 C TDTIIIZ .
o0T

Then from the last expression Z [ =cp]P ( ~) d is a continuous
t 0PP
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process in t E [0,T] for each i E D. Then from (2.10) we obtain that t[ ] is

also a continuous process in t E [0,T] for each cpE D. Moreover

(2.13) sup I~tI < (CTD +Clll ,
0<t-T T T T

Next let pT > ZT be such that the injection map (DTgr- T is Hilbert-Schmidt
T T P T

and let {e } (D be a CONS for D with dual basis {}.} a CONS for V
J j>- PT j j-I

Then from (2.13) we have

(2.14) sup W) [e 2 < (CTD +C Y e 112 < 00.

O<t<T j=l j T T T

Hence, define t(w)=E _ e which is an element in ' and
t PT

"t(w) [  = (w) [] for all OE P 0 < t <T WE 3 " Then by dominated convergence

theorem, since t (w)[e is continuous in t for each j > I we have that

2lim t  0 _ T = lim l(Et[ej]- [e )
_ t -to t-t0  =

2
= lim ( [ej] -C [ej]) = 0 toc [0,T].i T j=l t-t 0  t00

Then .(w) EC([O,T];4' ) for some PT>0 WE 3 , P(3 . Moreover from

(2.13), (2.1) and the assumption on nt we have

E( sup I t ) <
0!<t<T

Furthermore from (2.14) and since by assumption on qt E(CT) <2< we have that
t T

E( sup ! 2 )<-E(CTC) < tlO

05t!_T -PT (C=DT+CT) 2 = T

A similar argument to that at the end of Step 4 in Theorem 1 gives that

C(R]+, ') a.s.
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Step 5 Uniqueness

To show uniqueness let X be any solution of (5.3). For the present

assume that Xt satisfies the following condition:

(*) For each T> 0 there exists pT >0 such that XIE C([0,'I;V ) a.s.
TP

WLOG let P' > pT and

4 = {w : sup jjX ilj Ip< .
0!- 0<t<_T  T

Then P() = . Fix wE 03 nS4 and let 0<- t < T. Then for each E (D (suppressing

w in the writing)

t

Xt[ ] = fXs [P sT(s,t)c]ds + nt[M.
0

Next if t is the sequence of successive approximations defined in (2.4) we
t

have that for 0!5t !5T and P E (

(2.15) Xt[ J- [pJ= fXPss,t)p]ds

t t
(21) Xt[O] = E[,] = fx [Ps T(S,t)f]ds -  IsPTSt]d0

xt[ = - tc = JX [Pstl{ds - A(S[P SsT(st) ]ds
0 0

Xp -M tn, M f f... f [LX [P sT(s ,Ps nI)...P sT(s tMc
0 0 0 n n I

I T(s s)...P T(s ,t) ]}ds .ds- s [s n9 n-1s n*' 1
n n ~

ts sf f l...fn X [Psn T(Sn lsn).PsT(Sl,t)f]dSn .. dS •

0 0 0 Sn+l nl n

Then using the inequalities similar to (2.2) and (2.3) it follows that

t s
X [ ] ,[] - '''.fnlXn II nP T(s n s ) ' ' ' P T(sl t)II ds n ' ' ds

t t 0 0 sn+l PT s n+l n+1'n s 1 T

t % T
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(K'T)
- sup Ix 11 c n' 1 1Cm" < for all
0 <t _<T T T

for some positive constants C{,C, KT and m.

*Hence

sup Ix [I-n [I 0 as n-.0!O t< T  t

Thus P(Xt = t 0 < t < T)= 1 and a similar argument to that at the end of Step 5

in Theorem I gives P(Xt= t t>0) =1. The proof of the theorem is complete.

Q.E.D.

Using Theorems I and 2 we now solve the SDE(I) i.e.

'4 d t = (A'+P') tdt + dW{ t {t t

(o = Y

Theorem 3. Under assumptions AI-A4 the SDE (I) has a unique solution

(C )t>_ such that for each T> 0 there exists pT >0 and

'E C( [0,T]';V ) a.s.T T

and

E( sup HE 112_  ) < 0o.
0:5t T t P

Proof. Let nt be the solution of the SDE

" A'n dt + dW" dn t t t

no=Y

whose unique solution is given by Theorem I and it is such that for each

T> 0 there exists f =f? >max(qro),
% ~T0

TIT. E C([,T];D' ) a.s.

T

e*. L 0-
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and
t

(2.16) t) = (As)]ds + Wt[] + y[] for all cp EP 0 t T a.s.

Let , = ( ) be the solution, given by Theorem 2, of the SDE

t

(2.17) Ct = fT'(s,t)P'ssds + rt
0

which is such that for each T>0 there exists mT > T such that

E- T C( [0,T];(P' ) a.s.MTT

and
t

(2.18) t [ f] = [PsT(S,t) ]ds + nt [] for all E4( 0!-tT a.s.

0

We shall prove that is the unique solution of (I). First we show that itt

is a solution of (I):

- Applying Lemma 2(a) to B = P and F P we have

t

(2.19) [P T(P,t)] = [P P] + A [P T(p,s)A ] flds.

Let

aI:{wu : E C( [0,T] ;(P)TT

1W E*E C([0,T14('}

2 M T
i 2 = {w: §* C([O,T];OmT}

then P( 1 )= P(Q2) =1. Let wEIO 2 then (suppressing w in the writing) in-

tegrating (2.19) and applying Fubini's theorem we have

1.. t t t t

(2.20) fF [P T(p,t)(PJd~i fC [P W PIdv + f f [P PT(vi,s)A s $dsdi0O0 0 ts

t t s
= f [P V]d + f f [P T(,s)As Idds.
0 00

'.7A

S-",-. . . - ,"""- . ..". -". -"" . -". . '"""",,- '"" """ "" . "" . "" """""', ' .'',~ W ,--m" ., "',, ,%",,. ",
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Next from (2.18) 8

I [PT(ws)A t]d i + r [A si s[s ]  oq- -' s s

Then using the above expression in the second term of (2.20) we obtain

t t t t
(2.21) A W,[P WT(P,t)]dp = fW[P W¢]dw + f [As ]ds - fns[A s]ds.

But also from (2.18)

f; [P T(,t)P]dp = W [] - n t[]"

Hence from the above expression and (2.21) we obtain that

t[]- W tw]= A
s [Ps Ids + f s [As ]ds - fns [A s ]ds

~i.e.
i ~ .t t t

(2.22) t [] = 1[Ps]ds + fs[A s]ds + n t[] - fIs[AsIds.

0 0 0

Butt - ftn [A I]ds = y[] + W [q], then

t t

"t t[] = [ sP s ]ds + f [A s]ds + y[i] + W 
t [c] for all E

i.e.

dE t = (A' +P't)tdt + dWt.

Now we shall show that the solution t = (St) of (I) is unique. Suppose

there exists a '-valued process Et that is also a solution of (I). Then by

--" Proposition 4 for each T>0 there exists a set 23 of probability one such that

if WE 0 3

.T(W) E C([0,T] ;' ) some qT > 0

and

, - ,I, , . . " S-A - - - -- '" . ". -" *-'- ."..
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-~t t

(2.23) (w)[¢] = f (W)[Ps ]ds + f (w)[A s]ds + y(w)[] + W [ ]
s s 0Os S t

for all 'E(D 0 0 t < T.

Fix w E =Q nQ -3" Then (suppressing w in the writing) we have that for
4 1 2 3V

0 0O-s!-t -T and E(
s

(2.24) W [A T(s,t)] = s [A T(s,t)P] - ff [P A T(s,t)4]do

t
- [A A T(s,t) Idp - y[A sT(s,t)].

.On the other hand from (2.17), (2.16) and Theorem I we have that for 0< t <T

" '- a n d E (

t t
(2.25) C[' ] - s[PsT(s,t)tdds = fW [A sT(s,t)flds + y[T(0,t)0] + Wt [*].

0 0~~

Hence, using (2.24) in (2.25) we have that

t t
(2.26) t[ - [PsT(s,t)PIds - f [A sT(s,t)qIds

0 0 s

ts ts
- ff - [P A sT(st)f]dds - f f - 1 [A A sT(st)Idwds

001. ' 001. '

* t

- fy[AsT(s,t),lds + y[T(O,t)fl + Wt[lf1.
0

Next, using Lemma 2(b) with F=y and B= I we obtain

t
(2.27) - fy[A sT(s,t)f]ds + y[T(0,t)01 = y[].

0

Again, applying Lemma 2(b) to F' B=P and to F= and B A weI1 -  ' '

obtain the following two expressions

'- t
(2.28) -f W [P A sT(s,t)fds [P *1 -,4[P T(',I,t)fl

and

kohlSMln.. *.-
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t
(2.29) -f Iu [A A T(s,t)]ds = [A [] [AT(,t)t].

Hence, using (2.27), (2.28) and (2.29) in (2.26), we obtain

R' f% [PT(s,t) ]ds = .f S [A sT(s,t> ]ds + f [Pfdi
0 0 0

t t t
- f [P T(U,t)4IdU + .f [A 4]du - j [A T(W,t)]dU + y[p] + W [i]

0 U ' k 0 t

that is

t t t
t[ ] - f s[P sT(s,t)4]ds = f I[P (pWd + f [A 0]d4 + yVP] + W [pJ
t0 0 0 t

tf Ze
0 I 1 [P WT(Ii,t)ct]dw.

' Hence using (2.23) for w 2 4 0- t<T and pc (D we have that

t

*t 1 - f s[ P T(s,t)l]ds = n [M].0 st

Thus any solution t of (I) is a solution of (II) and therefore since Proposi-

* tion 4 implies condition (*) in Step 5 of Theorem 2, the solution of (I) is

unique.

Then the properties of t= ( t) follow from Theorems I and 2 and the proof

of Theorem 3 is complete.
Q.E.D.

Proposition 5. Under the hypotheses of Theorem 3, the solution t= ( t) of the

SDE (III) is a V'-valued continuous semimartingale with canonical decomposition

t t
S=W + {T'(0,t)y + fT'(s,t)A' 1a s + fT'(s,t)P'ssS.

Ct t 0 s s 0

Proof. From the proof of Theorem 3 t = ( t) is such that for all t 0 and 'c 1)

VP] = s [Ps T(s,t)P + nt[] + y[T(o,t) ]

where

P.-
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t
nt[¢] = y[T(O,t) ] + fW s[AsT(s,t)tpds + W [ ]

t 0

and from Proposition 2 n t is a iV-valued semimartingale with canonical decompo-

sition

n = W + V
1

t t t
I t

V = T'(0, t)y + fT' (s, t)A'W ds.
t 0 SS

Hence it only remains to prove that

t

Zt[(] = s [PsT(s,t) ]ds
0

is a process of bounded variation. It was shown in Step 4 of the proof of

Theorem 2 that Z [(] is continuous in t for each pE D on a set of probabilityt

one. Moreover from (2.12) we have that for each T> 0 and 0 t 0  t T

Iz t[ ] -zt0 ] I CTDTTjj [jt (t- to) .

Hence the process Zt [(] is of bounded variation on [0,T] for each T> 0. More-

over since it is continuous and F t-adapted, it is predictable.

Writing

Vt[(] = Z [ +] + M
t t t

we have that Vt [] is a continuous predictable process of finite variation and

t[(] admits the canonical decomposition

t[(p] = Wt[(p] + V [(p1.
t t t Q.E.D.

Proposition 6. Under the hypothesis of Proposition 5 if y is as in Proposition

3 then the solution t = (t)O of the SDE (III) is a '-valued continuous

Gaussian process.

Proof. From the proof of Theorem 2 t[( ] is the a.s. limit of a sequence of

n
Gaussian random variables .Hence F is Gaussian.QE

t t Q.E.D.
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3. Stochastic Evolution Equations Driven By Nuclear Space Valued Martingales

A '-valued stochastic process M= (M ) t>O is a '-valued martingale with

respect to a right continuous filtration (F t)t 0 if for each $E (D Mt [] is a

real valued martingale with respect to (F t). In this section the following

result will be useful.

Proposition 7. If M is a '-valued martingale with respect to Ft then

there exists a '-valued version M of M such that the following two conditions

hold:

a. For each T> 0 there exists qT > 0 such that

M.E D([O,T]:;I$' ) a.s.,
q T

where D([O,T];D' ) is the Skorohod space of right continuous left hand limits
q qT

(r.c.l.l.) functions from [O,T] to '

b. R is r.c.l.l. in the strong ('-topology, i.e.

RME D( [0, -); V )  a. s.

For the proof of this proposition, see Mitoma (1931).

Consider the stochastic evolution equation

Sd t =At'tdt + P'etdt + dM(IV) t

= Y

where y, A and P are as in assumptions AI,A3 and A4 in the Introduction
t t2

and Mt is a V'-valued right continuous martingale such that E(M []) 2< for

all , t O.

In this section we show how to solve the SDE (IV) in a similar manner as

for the 0'-valued Wiener case. Our goal is to prove the following analog of

Theorem 3.
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Theorem 6. Let M= (M t) t be a V'-valued martingale such that E(M t['III 2< r

for all E (D and assume that Al, A3 and A4 hold. Then the SDE (IV) has a unique

solution t = ( ) such that for each T> 0 there exists p T > 0 and

JE D([0,TJ;4 )

and

E( sup < I
0! t: T t P

Furthermore . is a V'-valued semimartingale with decomposition

t t

f T'(0,t)y + JT' (s,t)A'M ds + fVsO;'dl+ Mt
t 0 S s 0 ~T(~) 's}

As in the Vt-valued Wiener case we first solve the SDE without perturbation.

Theorem 7. Let M= (M t) t Obe a V'-valued martingale such that E(M [4W) 2<- for

all (P~ and assume that Al and A3 hold. Then the SDE

dC A'E'dt + dM
M ~ t t t t

has a unique 10-valued solution C= ( ) t Ogiven by

1. =T'(0,t)y + ftT'(s,t)A;M ds + M t 0
t0 s

i.e.
t

(3.1) t [1=y[T(0,t)O] + JM [ A T(s,t)o~ds + M t4 for all 4 E D t 0 a.s.
t 0t

Furthermore C satisfies the following two conditions:

2. for each T>Q0 there exists f- > 0 such that

T

and

E( sup C t~ )<

0!5t!T T

3. t is a V'-valued semimartingale with decomposition

t 1 %*. .,N N .

41'%.' .,
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t
t= {T'(0,t)y + fT'(s,t)A'M ds} + .t0 s s t

Proof. Since the proof of this theorem is very similar to that of Theorem I

we only give an outline of it.

Let T> 0, then by Proposition 7(a) there exists q T > 0 such that

MT E D([0,T];(D' ) a.s.
qT

Let

Q T = {w : M(w) E D([0,T] n)} n{w : Ily(w) fr < -1.
1 T r0

Then P(Q T)=I and if WEQ 1 the real valued map t- IMt(w) frq,T t

1k is right continuous with left hand limits. Then by (14.5) in Billingsley

(1968)

(3.2) sup IMt(w) q <o
O5t-<T -T

This fact enables us to show as in Step 1 of Theorem 1 that the map

fM [A T(s,t)pIds
0

is linear and continuous on D.

As in Step 2 of Theorem 1 it follows that the putative solution (3.1)

satisfies (V). We need only to replace W by M.

Next, as in Step 3 of Theorem 1 and using (3.2) it is easy to show that

Yt(w) given by
. t

(3.3) Y t(w)[ ] = fM [A T(s,t) Ids for all E
0ts s

satisfies the inequality

(3.4) IYt W -Y [] ] <  sup JIM sl TDIIPIIr It0-t I

0 0sT T 0
for t0 ,tE (0,TI and some D >0, r >0. Hence, Y t (w)[0] is continuous in t on

V. ~J~ "r~~. " ~ % -i 1
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T[0,T] for each E D and w 2 1. Then by (3.1) t(W)P is right continuous.

The proof of the existence of a D([0,T];) )-version is similar to the proof
zT

of Step 4 in Theorem I using again (3.2). The uniqueness is shown in a similar

way.

Finally the semimartingale property of the solution is shown in a similar

manner to Proposition I.
*, Q.E.D.

Theorem 8. Assume A3(b)-(c), A4 and let r = (nt ) be a '-valued right con-

tinuous stochastic process such that for each T> 0 there exists qT> 0 such

that

E( sup 11n I12 < )
0<t<T t T

Then the stochastic equation

t
(VI) t= r'(s,t)P''ds + nt  t 0

0

has a unique '-valued solution = (t)t> such that for each T> 0 there

exists pT > 0 and

j E D([0,T] ;OpT a.s.

The proof is similar to that of Theorem 2. The only change is in Step 4

where we must show that t[f] is right continuous and T E D([0,T];' ) a.s.
t 

P

Theorem 6 now follows from Theorems7 and 8 using the same arguments as in

7 the proof of Theorem 3.

%. .



42

4. Special Cases and Examples

In this section we consider special cases and examples of the above

theorems.

Example i. (Kallianpur and Wolpert (1984), Christensen (1985)).

Let 4C*Hc.* ' be a rigged Hilbert space on which is defined a continuous

linear operator A:D - and a strongly continuous semigroup (Tt)t_>0 on the

Hilbert space H such that the following conditions hold:

i) Tt - t0.

ii) The restriction Ttli :4 -D is i-continuous for all t > 0.

iii) t - T t is continuous for all E (.

iv) The generator -L of Tt on H coincides with A on H.

A semigroup (T t)t 0 satisfying the above conditions is called compatible

with (P,H,') or equivalently we say that ((D,H,T t) is a compatible family. If

in addition we assume that some power rI > 0 of the resolvent (al + L) is a

Hilbert-Schmidt operator, an appropriate countably Hilbertian nuclear space

can be constructed in the following manner (see Kallianpur and Wolpert (1984) for

details): The later condition on L implies that there is a CONS {f ij'-l in H1

such that L = X.j. j!l and 0 1- 5 X 2 - .... Take (x= 1 and define

={AEH. :j(I+L~rI <- for all r E I}

= E {EH : I (+ )2 r< ,'.> 2 <- for all rEIRI.
j=l J 

j H

Define the inner product <',-> on ( by
r

ji Jj '>H<"V' J >H

J=l~lX
2

and

II2 =<,>
r r

% %. . .
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Let D be the .1'r-completion of D. We then have

r rr r r

and for r < s 1sl Ir <-llslls and so Ps c Pr with (Do= H. It can be shown that the

canonical injection - is Hilbert-Schmidt for p>-r+r and that
p r I

4-f H<-' is a rigged Hilbert space. A compatible family (4,H,T t ) con-

structed in this way is said to be special.

Consider the Ornstein-Uhlenbeck SDE

(41 t dt + d M t

(4.1)j

This SDE has been solved by Kallianpur and Wolpert (1984) in the case of a

special compatible family and M is a (P-valued process with independent incre-

ments (a V'-valued martingale) defined through a Poisson random measure,

namely

t

(4.2) M t[l f f a (x)E(dadxds) E
0 ]RxX

where N(da,dx,dx) is a compensated Poisson random measure with variance

w(dadx)ds for some a-finite w on 1RxX . The last named authors showed that

when M is as in (4.2) or a ('-valued Wiener process, both Mt and the solution

of (4.1) belong to the space D(]; ') (or C(R+;Oq) in the Wiener process case)

where q is independent of t. Recently G. Kallianpur and S. Ramaswamy have

given an example of a 1'-valued Gaussian martingale Xt that does not satisfy

the following condition: There exists p independent of t such that X E P
t p

for all t->0 a.s. The example is as follows: Let (D,H,T t) be a special

compatible family with {} > {?J>l and r as above. Define for cE P

f(s, )= j (X H
j=l

%', 'A VN
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and let (Bs)s>0 be a real-valued standard Brownian motion. For t 2 0 and $ (

define
t

Xt,¢ = ff(s,*-)dBs
0

Then X ,( has a regularization Xt [(] that is a 0'-valued Gaussian martingale

such that there does not exist p> 0 independent of t with X E V' for all t O.
t p

Hence we cannot expect that Theorem 7 applied to M=X will give a solution

lying in C(I+;(') for p independent of t.

In the case of a compatible family and when M t is a 4'-valued martingale,

the SDE (4.1) has been solved by Christensen (1985).

The SDE (4.1) is a special case of the SDE (IV) in Section 3 where A =A% " t

and Pt 0 for all t O. Then we have the following result.

Theorem 9. Let (4,H,T t ) be a compatible family. Let y be an F0-measurable

random variable such that ElIyII2 <0 for some r 0 >0 and M= (Mt)t20 be a V-

0r 2
valued right continuous martingale such that E(M []) <- for all OE ED. Then

the SDE (4.1) has a unique 4'-valued solution = (t)tO given by

t

t[(] = Y[rt ] + fM s[Tts Ao]ds + M t[P 
for all (E 4D.

0

Moreover has the following property: For each T> 0 there exists pT > 0

such that

ET DQ'T )( a.s.

and

E( sup k t12
0!t5T T

Proof. It follows from Theorem 7 since any compatible family (4,H,T ) satisfies

assumptions AI-A3 given in the introduction.

The SDE (4.1') is a model used in neurophysiological applications (see

Kallianpur and Wolpert (1984) and Christensen and Kallianpur (1985)). However

% P,% ' . % . . - % . .% . , .- , .-



45

it is important to observe that in this field the kind of perturbations that

occur are more likely to be nonlinear rather than linear. We hope to investi-

gate such problems in future papers.

Example 2. (Adapted from Mitoma (1985)). This example is an instance wLere

T(s,t), At and Pt can all be defined directly on a countably Hilbert nuclear

space D. It was recently considered by Mitoma (1985) in the case when D is

obtained by modifying the space S. For the purpose of illustration we here

consider S for which some simplifications are possible. Recall that the topo-

logy of S is given by the Hilbertian norms

n 2 2n (k 2
(4.3) 1II = I f (l+x )2$((x)I dx n 0,

k=0 JR

and that this topology is also given by the family of seminorms

(4.4) = sup sup (+ x2)nI (k)(x)I n 0.

0nk:n xEIR

For p E S and t 0 define

(4.5) (A W)(x) = O C(x,t) 2 (2) + (xt (x)

where a(x,t) and a(x,t) are uniformly bounded functions satisfying the follow-

ing two properties:

k k k dk
(i) D c((x,t), D k(x,t) (D -) are continuous and bounded in (x,t)

dxk
for all k 0,

(2) (2)(ii) D 2)(x,t) and D 2(x,t) are locally E-Holder continuous for some

0< e ! l and a(x,t), a(x,t) are locally Lipschitz continuous in x.

Theorem 10. Let ca(x,t), a(x,t) as above and define A as in (4.5) Let P bet t

any perturbation operator from S to S that satisfies assumption A4(a)-(b).

Then the SDE

e" 4-,

~ >:
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dft = (A' +Pt)Cdt + dW :y

tthas an S'-valued solution where W t is an S'-valued Wiener process and y is an

6 S'-valued Gaussian random variable.

Proof. We have to prove that assumptions of Theorem 3 are satisfied.

Step I. We first prove that A t satisfies assumption A3(a). Since a(x,t)

and f(x,t) are C in x with bounded derivatives that are continuous in t,

for each T> 0 there exist constants Ci = Ci(T,n) i
= 1,..., 3 such that for

(4.6) I(At() (x)l . Cll(n)(x)l + C2 nq(n+l)(x)l + c3 1j(n+2 ) (x)I

and therefore from (4.5) for some constant C(n,t) 0

(4.7) 1IAt n12 < C(n,T)[ 1I 2n 2  for all E ( 0:< t <-T.

A Hence, A :S-S is a continuous linear operator in the S-topology.
t

Next, since ct(x,t) and B(x,t) have derivatives in x bounded and continu-

ous in (x,t), for all k > , and XEIR (A t0 (k) (x) is continuous in t.

Then using (4.6) and the dominated convergence theorem, from (4.3) we have

that for all n - I and 4 E S

n

1IAt -As 11 = f(l+x2 ) 2n(A ) k(x) - (A ))k 12dx 0
s n k=0JR t s (x)

for s,tE [0,T]. Then assumption A3(a) is satisfied.

Step 2. We check conditions A3(b)-(e) in Theorem 3. In order to do this we

apply the ideas of Mitoma (1985) of using some results in Kunita (1982) but ap-

plying them to the space S (for which some simplifications are possible) in-

stead of the nuclear space considered by Mitoma.

* Let B= (B(t)) be a one dimensional Brownian motion and 9 t(x) be a

unique solution of the ItS stochastic differential equation (see Condition

(iii))

A.a . * ' . %
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t t

Ws~ xx + >fsa(7 W 0dB W) + f w (x) r) dr

(x)=x xcE]R.

Sss

For any E ES def ine - ,------ -- ----- - "'----q

(4.8) (T(s,t)4)(x) =E[cp(n S C x))

(which is well defined since 1 is bounded). From Kunita (1982) using (iii)

we obtain ItO8's forward and backward equations for s< t

(x,) (1) (1 x)Br)+()d

(.) (lS (x))- -(X) f=~ s,r W~) ns,r ()dr +f(A r )(q s,r ()d

t t

(4.10) p(n St(x)) -c(x) fa(x,r)D(p(71rn (x))dB^(r) + f(A r n 1 )(x)dr

where the first term of (4.10) is the backward ItS integral and (hfl )~

means composition.

Taking expected values in both sides of (4.9) we have

t

(4.11) (T(s,t) )(x) -4(x) = E(f(A r )(q sl (x))dr).

But

(A p)(r (x) = 1 (x),r) 2 (2) ( Cx)) + W(f xr)-(I) (x)).r s,r 2 s,r ~ s,r s,r~x ) ~s,r

Then from the boundedness of a'' 1 and 2 and Fubini's theorem applied to

(4.11) we obtain
t t

(T(s,t) )(x) - 1'(x) = JE[A r (nls~ (x))]dr = JT(s,r)(A r )(x)dr.
r ss

Hence, we have the forward equation

d
(4.12) dt (~)()=(~~)t)X <t ES

Similarly, taking expected values in both sides of (4.10) we have

t

(T(s,t)O)(x) O (x) Ef(A r n i )(x)dr
r s

-111 111b
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and since A rE(( r,t(x)) = E((A r' r,t)(x)), then

t

(T(s,t) )(x) - c(x) = fArT(r,t)$(x)dr
s

which gives the backward equation

(4.13) dT(st)4 = -(A T(s,t))(x) s< t, E S.
ds 'sAS

Hence At is the generator of a two parameter semigroup and satisfies assump-

tion A3(b).

Next from Lemma 2.3 in Kunita (1982), for n->0 and s,te [O,T]

(4.14) E[(l + Is t  K(nT)(1

Hence for all s,tc [0,T] and O-<k<-n

(k) 2 (1 st (x) (2n+2

E10P ((flt (x))I =E{-(+n~ ) 2 niI (ns, S' (x))I}

I 2' (k) 2

E < E( I i )2  : In (x)I 2)2(n+ l ) ,(k)(,, (x))l2-(1+ In s't (x) 2 )2 n+ l') ( i  l s 't  s't

S<K(n,T) 12

+ x 2 2(n+1) 2(n+l)

(4 5) l(k) (n~~) 2 1!11'111 2(n
(4,. 1 ) E ( I < K (n,T) S,~l s t E [0, T], k = 0 .... , n.(~()+x

Hence, using (4.15)

n=I~s t[ 1 f (I + x 2) 2n ID (k) E (n t(x))I 2 dx

k=0  St 2(n+l) 2 (k=0 R (1+x )

., '. IT~s,t) 112  < C(n,T) 111 1112n 1 s,t E [0,T] .
n 2(nl

~ OA

z
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Then from the last expression we have that T(s,t) satisfies assumptions A3(c)

and A3(f).

Next from Theorem 2.1 in Kunita (1982) 9 S' (x) is continuous in (s,t,x).

Then since has continuous derivatives, applying dominated convergence theorem

twice together with (4.15) if t- t 0and 0 ss t 0 !T, PgS we have

2I~~)~-~ t 2 2n (k) (k (X)2o1 Ts )- st0)Hn I= f (l+x ) E(4 (ns (W)) (nk s (~) dx
k IR stst 0

-~0.

Hence T(s,t) satisfies A3(d) and similarly satisfies A3(e).

Moreover, using again (4.15) and a similar argument to that used in obtain-

ing (4.15) we have

()2 s't (k) (x),2
(x)) + ,=t() 2 In S ())

E~t(+ I () )fl_ E s1+I () 2)2 ()t ()2

In ~ )~l Int (x)j ) nS'

E( 111 22s t

:5 K(n, t)- 2n for all x (F R and for all s,t E [0,T]
L +x2 ) s2n~

Hence using (4.4) and the above inequality we have

2 2 2 n Wk 2IT(s, t III n =sup sup(l +x ) IEP 01 (xt)
Q! k:n xE]R

5 K(n,T) 11joPIII n L, , S,t E 1O,TI, T >0
n

and therefore T(s,t) satisfies assumption A(c) for the family of seminorms

{11I -III n; n !0} given by (4.4).

Then if (P ) -2 is any perturbation operator on S that satisfies condi-

tions A4(a)-(b), by Theorem 3 the SDE
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d = (A t+ P t)' t dt +r dW

=

V has a unique S'-valued solution t~( such that for each T>O0 there exists

m >0 and

cC((O,TI;Sr) a.s.m

E( sup flsIm ~Q.E.D.

'4.W
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Example 3. (Hitsuda-Mitoma (1985), Mitoma (1985)). This example has been

considered by Hitsuda and Mitoma (1985) and Mitoma (1985) in connection with

central limit theorems for propagation of chaos (see McKean (1967)).

Let

O(x) = 10rcexp(-I/(l- xi)) xl <I

where c is such that f 3R(x)dx = i. Let

4)(x) = fe- I (x - i)d

IR

and 9(x) = 1/p)(x). Let S be the space of rapidly decreasing functions and

define

-* (4.16) 4= {(x) = W(x)f(x) f S}.

For t ¢ (D(x)= e(x)f(x)) define the following Hilbertian and non-Hilbertian

seminorms on

n d

(4.17) filiI22 = ](+ 2n (x)l 2 d x

n k=OIR dxk

2 k

(4.18) 1101= sup sup (l+x )l -- f(x)i
n 0<k!n XEIR dx

" These norms define and equivalent Frechet topology on 0 and {,1Itgln n > } is

a countably Hilbertian nuclear space.

Next let a(x,y) and b(x,y) be bounded C --functions in (x,y) and define

(4.19) c(x,t) = f a(x,y)p(dy,t)

JR

(4.20) (x,t) = f b(x,y)u(dy,t)

JR

where w(dx,t) is the probability distribution of the solution X(t) of the

real valued SDE

(4.21) dX(t) - ct(X(t),t)d~3t + (X(t),t)dt, X0=a

zt
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where B is a one dimensional Brownian motion and a is a real valued r.v. in-

dependent of (B t) such that E(ec0a2 )< - for some c0 >0. McKean (1967) has

shown that the measure P(t) has a density w(x,t) and that c(x,t), B(x,t) and

i(x,t) are C -functions in IRx]R+.

Theorem 11. Let a(x,y), b(x,y), cc(x,t) and 5(x,t) be as above and define for

I ((x) = 8(x)f(x) f E S) and t - 0

(4.22) (A 2x) = 2 (2) ((1)
t)(x,t) (x) + (x,t) (x)

(4.23) (P t)(x) = f b(y,x)c(1)(y)jj(dy,t) + f a(y,t)a(y,x)p (2) (y)i(dyt).
tR IR

Then the SDE

dt = (A +P )' dt + dW
t t t t t

has a unique '-valued solution, where W is a '-valued Wiener process in-
t

dependent of the '-valued Gaussian random variable y.

Proof. We have to show that assumptions AI-A4 of Theorem 3 are satisfied.

Conditions AI-A3 are shown in a similar way as in Example 2 (see Mitoma (1985)).

It remains to show that the perturbation operator given by (4.23) satisfies

assumptions A4(a)-(c).

Let T> 0 and for 0-<t! T define

gt (x) f b(y,x)0(1)(Y)1j(dy,t)

JR
and

h (x) =f a(y,x)(y,t)(2(y)p(dy,t)

Then from (4.18) for 0!.t :T and n 0O

2 k(4.24) IlIgt IIn = sup sup (i+x )n d7q(x)g t (x) .
(.4 n k 0kn xEIR dx

Using Leibnitz formula and the definition of g t(x) we have
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d k  k d k  k djk-j... _k(xg(x) = __-jk (x) dk -j = f(I(x
d k g (x) L f --- I Wx) b(y,x ) (y) (dy,t).

dx j=0 dx dx j=0 IR dx 3  dxk

Next, using the fact that b(x,y) is a uniformly bounded function in C we obtain

that for a constant K = K (n)

sup (j + x2 )n] dxk g sup ( +K x 2n._, x -- t~x[ < K1 =O xSUp (1+x ) !-- (x) IR L'(Y) I (dy't)"

xElR dxkq(xgt X1!5 = --,'E ]R dx ~ JR

But ) S since for each n > l (x) <- C(n)edn Thus
dx n

sup (l+x ) H W(x)I < M j=0,..., n
xc]R dxJ  n

and hence

(4.25) IIIgt(x)II_ K2(n)f I() M(y)Iv(dy,t).
JR

Next since ,(y) = O(y)f(y),

10 (1)(y)1 _< J(1) (y)Jlf(y)l + hE(y)Jjf()(y)j.

But for each n - 0

1 e(n)y)I - N e l y  yE IR

and by (4.18)

(1 + y2 ) 2f(y)I -< IIbII 2 yE R

and

(I + y22 If (1) (y)I - 111112 yE R

Then
I {, 1 (y)[ 1 _< C e ly l

n

and from (4.24) we have

IIIgtII - K3(n) 111 112f eIYd (t,dy)
nR

V. ~rv. W ~ % *,m~ ~ -
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Finally since E[eCOa 2 <- for some constant C0 , using Theorem 5.7.2 in

Kallianpur (1980) we have

(4.26) f elYidp(t,dy) !5 KT  for 0<-t-<T.
JR

Then

II~gt IIn  < K 4(n) ll I2 0O<-t<- T

and in a very similar way one shows that

11h t IIIn <- K5 (n) I11 III 2 0 < :t<T.

Hence for each n-> 1 and 0 <t< T

(4.27) IIIPt 111 n < K6 (n,T) 111 111 2

and P satisfies assumption A4(a).t

Next from (4.23) since a(x,y) and b(xy) are uniformly bounded C -o

functions in (x,y), from (4.26) we have that for t,t0 E [0,T]

J(P 0k(x) - (P 0)(k)(x)1 - 1f --kb (y, x) (y)(P(y,t) -iW(yt)dy
t t IR 3x

+ If _ k (yx)0(2) (y)(a(y,t
)P(ty) -a(y,t 0 )iJ(y,t0 ))dyI

JRaxk0 
0

<- K5 (W) f eYIjj(Y, t ) - p (y ,t
O0 ) Id y

II

+ f eYc(Y,t)(y,t) -a(y,t 0)1(y,to)Idy.
IR

Also as in the proof of (4.25) we have

C3 = sup sup (l+ x )n- -- P(X)j <
Ok!n xEP dx

Hence, using (4.18) and Leibnitz formula

(Pt0)(k)- (P tl(k)111 = sup sup (l+x2)njA _kP(X)((Pt0) (k) .-P 0 (k)(x) (x)I
t0 n 0<-k!n xER dx 0

. *,*.- ., % V - . - , , .%. , N.
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kC 3  1oK5(J ) { f eYlp(Y,t) - w(y,t0) Idy + f eYIc(Y,t)(y,t) -ct(y,t 0) (y,t0 )Idy}

which goes to zero as t -t o, t,t0 E [0,T] since a(y,t) and i(t,y) are C°°-functions

in ]×,RX]+. Then Pt satisfies assumption A4(b) of Theorem 3. Q.E.D.

This example has been considered by Mitoma (1985) and Hitsuda and Mitoma

(1985) in connection with the following central limit theorem: Consider the

n-th interacting particle diffusion process y (t) = (Y(1)(t) .. yGn)(n))
1 n

given by the SDE

n t k n.( )1 n t k n

Y (n)(t) = k + I a (Y (s),Y( (s))dB (S) + - b(Y n)(s),Y( (s))ds
k k n Xf k nX kj = 10J=lO0

k= 1,2,..., n,

where (k ,B k(t)) are independent copies of (u,B(t)). Writing

n

U(n) (t) = _kX Y  t>O
n k1 Yn) (

(where 6 is the unit mass at x) McKean (1967) has shown that U (n)(t) -1 J(t)x

where p(t) is the probability distribution of the solution of (4.31). Let

S n(t) = wInIu(n)(t)- P(t) ).
n

Hitsuda and Mitoma (1985) have shown that any limit process t= ( t) of

the measure valued process S (-) must satisfy the stochastic evolution equationn

(4.28) d~t = (A'+P't)tdt + dWt  0=y

where At and Pt are given by (4.22) and (4.23), Et is a V'-valued process

and D is the countably Hilbert nuclear space given by (4.16).

Mitoma (1985) has solved the equation (4.28) under the additional hypo-

theses that all the derivatives with respect to x of ct(x,t) and (x,t) are

locally Holder X(n,t)-continuous on T for each n> l and T >0. He considers

(4.28) as

. , A N / -, . ,, ,,
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t

t y + Wt + f(A + Ps)' s ds
0

where the integral means the Riemann integral and his proof requires the

extension of Kolmogorov's forward and backward equation to the niIIn-comple-

tion of P for each n>-1.

p.
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